Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38600154

RESUMO

Preclinical research has demonstrated the efficacy of CB1 receptor (CB1R) antagonists in reducing drug-taking behavior. However, clinical trials with rimonabant, a CB1R antagonist with inverse agonist profile, failed due to severe adverse effects, such as depression and suicidality. As a result, efforts have shifted towards developing novel neutral CB1R antagonists without an inverse agonist profile for treating substance use disorders. Here, we assessed AM6527, a CB1R neutral antagonist, in addiction animal models. Our findings revealed that AM6527 did not affect cocaine self-administration under fixed-ratio reinforcement schedules but dose-dependently inhibited it under progressive-ratio reinforcement schedules. Additionally, AM6527 dose-dependently inhibited heroin self-administration under both fixed-ratio and progressive-ratio reinforcement schedules and oral sucrose self-administration under a fixed-ratio reinforcement schedule, as well as cocaine- or heroin-triggered reinstatement of drug-seeking behavior in rats. However, chronic AM6527 administration for five consecutive days significantly inhibited heroin self-administration only during the initial two days, indicating tolerance development. Notably, AM6527 did not produce rewarding or aversive effects by itself in classical electrical intracranial self-stimulation and conditioned place preference tests. However, in optical intracranial self-stimulation (oICSS) maintained by optogenetic stimulation of midbrain dopamine neurons in DAT-cre mice, both AM6527 and rimonabant dose-dependently inhibited dopamine-dependent oICSS behavior. Together, these findings suggest that AM6527 effectively reduces drug-taking and seeking behaviors without rimonabant-like adverse effects. Thus, AM6527 warrants further investigation as a potential pharmacotherapy for opioid and cocaine use disorders.

2.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542425

RESUMO

Brain-stimulation reward, also known as intracranial self-stimulation (ICSS), is a commonly used procedure for studying brain reward function and drug reward. In electrical ICSS (eICSS), an electrode is surgically implanted into the medial forebrain bundle (MFB) in the lateral hypothalamus or the ventral tegmental area (VTA) in the midbrain. Operant lever responding leads to the delivery of electrical pulse stimulation. The alteration in the stimulation frequency-lever response curve is used to evaluate the impact of pharmacological agents on brain reward function. If a test drug induces a leftward or upward shift in the eICSS response curve, it implies a reward-enhancing or abuse-like effect. Conversely, if a drug causes a rightward or downward shift in the functional response curve, it suggests a reward-attenuating or aversive effect. A significant drawback of eICSS is the lack of cellular selectivity in understanding the neural substrates underlying this behavior. Excitingly, recent advancements in optical ICSS (oICSS) have facilitated the development of at least three cell type-specific oICSS models-dopamine-, glutamate-, and GABA-dependent oICSS. In these new models, a comparable stimulation frequency-lever response curve has been established and employed to study the substrate-specific mechanisms underlying brain reward function and a drug's rewarding versus aversive effects. In this review article, we summarize recent progress in this exciting research area. The findings in oICSS have not only increased our understanding of the neural mechanisms underlying drug reward and addiction but have also introduced a novel behavioral model in preclinical medication development for treating substance use disorders.


Assuntos
Roedores , Autoestimulação , Animais , Recompensa , Mesencéfalo , Feixe Prosencefálico Mediano , Estimulação Elétrica
3.
Transl Psychiatry ; 14(1): 101, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374108

RESUMO

G protein-coupled receptor 55 (GPR55) has been thought to be a putative cannabinoid receptor. However, little is known about its functional role in cannabinoid action and substance use disorders. Here we report that GPR55 is predominantly found in glutamate neurons in the brain, and its activation reduces self-administration of cocaine and nicotine in rats and mice. Using RNAscope in situ hybridization, GPR55 mRNA was identified in cortical vesicular glutamate transporter 1 (VgluT1)-positive and subcortical VgluT2-positive glutamate neurons, with no detection in midbrain dopamine (DA) neurons. Immunohistochemistry detected a GPR55-like signal in both wildtype and GPR55-knockout mice, suggesting non-specific staining. However, analysis using a fluorescent CB1/GPR55 ligand (T1117) in CB1-knockout mice confirmed GPR55 binding in glutamate neurons, not in midbrain DA neurons. Systemic administration of the GPR55 agonist O-1602 didnt impact ∆9-THC-induced analgesia, hypothermia and catalepsy, but significantly mitigated cocaine-enhanced brain-stimulation reward caused by optogenetic activation of midbrain DA neurons. O-1602 alone failed to alter extracellar DA, but elevated extracellular glutamate, in the nucleus accumbens. In addition, O-1602 also demonstrated inhibitory effects on cocaine or nicotine self-administration under low fixed-ratio and/or progressive-ratio reinforcement schedules in rats and wildtype mice, with no such effects observed in GPR55-knockout mice. Together, these findings suggest that GPR55 activation may functionally modulate drug-taking and drug-seeking behavior possibly via a glutamate-dependent mechanism, and therefore, GPR55 deserves further study as a new therapeutic target for treating substance use disorders.


Assuntos
Canabidiol , Cocaína , Receptores de Canabinoides , Transtornos Relacionados ao Uso de Substâncias , Animais , Camundongos , Ratos , Canabidiol/análogos & derivados , Cocaína/farmacologia , Neurônios Dopaminérgicos/metabolismo , Ácido Glutâmico/metabolismo , Camundongos Knockout , Nicotina/farmacologia , Preparações Farmacêuticas/metabolismo , Receptores de Canabinoides/metabolismo , Receptores Acoplados a Proteínas G/genética , Transtornos Relacionados ao Uso de Substâncias/genética , Transtornos Relacionados ao Uso de Substâncias/metabolismo
4.
Neuropsychopharmacology ; 49(3): 508-520, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37542159

RESUMO

The spino-ponto-amygdaloid pathway is a major ascending circuit relaying nociceptive information from the spinal cord to the brain. Potentiation of excitatory synaptic transmission in the parabrachial nucleus (PBN) to central amygdala (CeA) pathway has been reported in rodent models of persistent pain. However, the functional significance of this pathway in the modulation of the somatosensory component of pain was recently challenged by studies showing that spinal nociceptive neurons do not target CeA-projecting PBN cells and that manipulations of this pathway have no effect on reflexive-defensive somatosensory responses to peripheral noxious stimulation. Here, we showed that activation of CeA-projecting PBN neurons is critical to increase both stimulus-evoked and spontaneous nociceptive responses following an injury in male and female mice. Using optogenetic-assisted circuit mapping, we confirmed a functional excitatory projection from PBN→CeA that is independent of the genetic or firing identity of CeA cells. We then showed that peripheral noxious stimulation increased the expression of the neuronal activity marker Fos in CeA-projecting PBN neurons and that chemogenetic inactivation of these cells decreased behavioral hypersensitivity in models of neuropathic and inflammatory pain without affecting baseline nociception. Lastly, we showed that chemogenetic activation of CeA-projecting PBN neurons is sufficient to induced bilateral hypersensitivity without injury. Together, our results indicate that the PBN→CeA pathway is a key modulator of pain-related behaviors that can increase reflexive-defensive and affective-motivational responses to somatosensory stimulation in injured states without affecting nociception under normal physiological conditions.


Assuntos
Núcleo Central da Amígdala , Núcleos Parabraquiais , Camundongos , Masculino , Feminino , Animais , Dor , Núcleos Parabraquiais/fisiologia , Neurônios/fisiologia , Transmissão Sináptica
5.
Res Sq ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37886574

RESUMO

Cannabis legalization continues to progress in the USA for medical and recreational purposes. G protein-coupled receptor 55 (GPR55) is a putative "CB3" receptor. However, its functional role in cannabinoid action and drug abuse is not explored. Here we report that GPR55 is mainly expressed in cortical and subcortical glutamate neurons and its activation attenuates nicotine taking and seeking in rats and mice. RNAscope in situ hybridization detected GPR55 mRNA in cortical vesicular glutamate transporter 1 (VgluT1)-positive and subcortical VgluT2-positive glutamate neurons in wildtype, but not GPR55-knockout, mice. GPR55 mRNA was not detected in midbrain dopamine (DA) neurons in either genotype. Immunohistochemistry assays detected GPR55-like staining, but the signal is not GPR55-specific as the immunostaining was still detectable in GPR55-knockout mice. We then used a fluorescent CB1-GPR55 ligand (T1117) and detected GPR55 binding in cortical and subcortical glutamate neurons, but not in midbrain DA neurons, in CB1-knockout mice. Systemic administration of O-1602, a GPR55 agonist, dose-dependently increased extracellular glutamate, not DA, in the nucleus accumbens. Pretreatment with O-1602 failed to alter Δ9-tetrahydrocannabinol (D9-THC)-induced triad effects or intravenous cocaine self-administration, but it dose-dependently inhibited nicotine self-administration under fixed-ratio and progressive-ratio reinforcement schedules in rats and wildtype mice, not in GPR55-knockout mice. O-1602 itself is not rewarding or aversive as assessed by optical intracranial self-stimulation (oICSS) in DAT-Cre mice. These findings suggest that GPR55 is functionally involved in nicotine reward process possibly by a glutamate-dependent mechanism, and therefore, GPR55 deserves further research as a new therapeutic target for treating nicotine use disorder.

6.
bioRxiv ; 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945586

RESUMO

The spino-ponto-amygdaloid pathway is a major ascending circuit relaying nociceptive information from the spinal cord to the brain. Potentiation of excitatory synaptic transmission in the parabrachial nucleus (PbN) to central amygdala (CeA) pathway has been reported in rodent models of persistent pain. At the behavioral level, the PbN→CeA pathway has been proposed to serve as a general alarm system to potential threats that modulates pain-related escape behaviors, threat memory, aversion, and affective-motivational (but not somatosensory) responses to painful stimuli. Increased sensitivity to previously innocuous somatosensory stimulation is a hallmark of chronic pain. Whether the PbN→CeA circuit contributes to heightened peripheral sensitivity following an injury, however, remains unknown. Here, we demonstrate that activation of CeA-projecting PbN neurons contributes to injury-induced behavioral hypersensitivity but not baseline nociception in male and female mice. Using optogenetic assisted circuit mapping, we confirmed a functional excitatory projection from PbN→CeA that is independent of the genetic or firing identity of CeA cells. We then showed that peripheral noxious stimulation increases the expression of the neuronal activity marker c-Fos in CeA-projecting PbN neurons and chemogenetic inactivation of these cells reduces behavioral hypersensitivity in models of neuropathic and inflammatory pain without affecting baseline nociception. Lastly, we show that chemogenetic activation of CeA-projecting PbN neurons is sufficient to induce bilateral hypersensitivity without injury. Together, our results demonstrate that the PbN→CeA pathway is a key modulator of pain-related behaviors that can amplify responses to somatosensory stimulation in pathological states without affecting nociception under normal physiological conditions. Significance Statement: Early studies identified the spino-ponto-amygdaloid pathway as a major ascending circuit conveying nociceptive inputs from the spinal cord to the brain. The functional significance of this circuit to injury-induced hypersensitivity, however, remains unknown. Here, we addressed this gap in knowledge using viral-mediated anatomical tracers, ex-vivo electrophysiology and chemogenetic intersectional approaches in rodent models of persistent pain. We found that activation of this pathway contributes to injury-induced hypersensitivity, directly demonstrating a critical function of the PbN→CeA circuit in pain modulation.

7.
J Med Chem ; 66(3): 1809-1834, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36661568

RESUMO

Highly selective dopamine D3 receptor (D3R) partial agonists/antagonists have been developed for the treatment of psychostimulant use disorders (PSUD). However, none have reached the clinic due to insufficient potency/efficacy or potential cardiotoxicity. Cariprazine, an FDA-approved drug for the treatment of schizophrenia and bipolar disorder, is a high-affinity D3R partial agonist (Ki = 0.22 nM) with 3.6-fold selectivity over the homologous dopamine D2 receptor (D2R). We hypothesized that compounds that are moderately D3R/D2R-selective partial agonists/antagonists may be effective for the treatment of PSUD. By systematically modifying the parent molecule, we discovered partial agonists/antagonists, as measured in bioluminescence resonance energy transfer (BRET)-based assays, with high D3R affinities (Ki = 0.14-50 nM) and moderate selectivity (<100-fold) over D2R. Cariprazine and two lead analogues, 13a and 13e, decreased cocaine self-administration (FR2; 1-10 mg/kg, i.p.) in rats, suggesting that partial agonists/antagonists with modest D3R/D2R selectivity may be effective in treating PSUD and potentially comorbidities with other affective disorders.


Assuntos
Estimulantes do Sistema Nervoso Central , Dopamina , Ratos , Animais , Receptores de Dopamina D3 , Ligantes , Agonistas de Dopamina
8.
Cells ; 11(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36291128

RESUMO

Cannabinoid receptor 1 (CB1R) has been one of the major targets in medication development for treating substance use disorders (SUDs). Early studies indicated that rimonabant, a selective CB1R antagonist with an inverse agonist profile, was highly promising as a therapeutic for SUDs. However, its adverse side effects, such as depression and suicidality, led to its withdrawal from clinical trials worldwide in 2008. Consequently, much research interest shifted to developing neutral CB1R antagonists based on the recognition that rimonabant's side effects may be related to its inverse agonist profile. In this article, we first review rimonabant's research background as a potential pharmacotherapy for SUDs. Then, we discuss the possible mechanisms underlying its therapeutic anti-addictive effects versus its adverse effects. Lastly, we discuss the rationale for developing neutral CB1R antagonists as potential treatments for SUDs, the supporting evidence in recent research, and the challenges of this strategy. We conclude that developing neutral CB1R antagonists without inverse agonist profile may represent attractive strategies for the treatment of SUDs.


Assuntos
Antagonistas de Receptores de Canabinoides , Receptor CB1 de Canabinoide , Rimonabanto , Transtornos Relacionados ao Uso de Substâncias , Humanos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Rimonabanto/uso terapêutico , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Antagonistas de Receptores de Canabinoides/uso terapêutico
9.
Elife ; 112022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269044

RESUMO

Central amygdala neurons expressing protein kinase C-delta (CeA-PKCδ) are sensitized following nerve injury and promote pain-related responses in mice. The neural circuits underlying modulation of pain-related behaviors by CeA-PKCδ neurons, however, remain unknown. In this study, we identified a neural circuit that originates in CeA-PKCδ neurons and terminates in the ventral region of the zona incerta (ZI), a subthalamic structure previously linked to pain processing. Behavioral experiments show that chemogenetic inhibition of GABAergic ZI neurons induced bilateral hypersensitivity in uninjured mice and contralateral hypersensitivity after nerve injury. In contrast, chemogenetic activation of GABAergic ZI neurons reversed nerve injury-induced hypersensitivity. Optogenetic manipulations of CeA-PKCδ axonal terminals in the ZI further showed that inhibition of this pathway reduces nerve injury-induced hypersensitivity whereas activation of the pathway produces hypersensitivity in the uninjured paws. Altogether, our results identify a novel nociceptive inhibitory efferent pathway from CeA-PKCδ neurons to the ZI that bidirectionally modulates pain-related behaviors in mice.


Assuntos
Núcleo Central da Amígdala , Zona Incerta , Animais , Camundongos , Zona Incerta/fisiologia , Dor , Neurônios GABAérgicos/fisiologia , Optogenética
10.
eNeuro ; 6(2)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30923737

RESUMO

The medial prefrontal cortex (mPFC) processes contextual information from the hippocampus to generate appropriate fear responses. In rodents, one path for sending contextual information to the mPFC is via the direct projections from the ventral hippocampus (vHC) to the infralimbic cortex (IL). Plasticity in the synaptic communication from the vHC to the IL could contribute to the behavioral changes produced by the acquisition and extinction of conditioned fear. To examine this possibility, we used optogenetic stimulation of vHC synapses in brain slices from trained rats. We found that fear acquisition reduced NMDA receptor (NMDAR) currents at vHC synapses onto IL pyramidal neurons. The depression of NMDAR currents reversed more efficiently after extinction in the conditioning context than extinction in a novel context. Moreover, a cohort of animals that exhibited poor extinction retrieval failed to reverse the plasticity induced by fear conditioning. In addition, ex vivo application of brain-derived neurotrophic factor (BDNF), which is known to simulate extinction in IL, reversed this conditioning-induced plasticity mimicking extinction. Therefore, we have identified a novel mechanism that modulates conditioned fear via changes in NMDAR current at vHC synapses onto IL pyramidal neurons. Disruption of this mechanism could contribute to the abnormal contextual modulation of fear seen in posttraumatic stress disorder (PTSD).


Assuntos
Medo/fisiologia , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Condicionamento Clássico , Sinais (Psicologia) , Extinção Psicológica/fisiologia , Masculino , Vias Neurais/metabolismo , Ratos , Ratos Sprague-Dawley
11.
Learn Mem ; 24(4): 145-152, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28298552

RESUMO

The factors influencing resiliency to the development of post-traumatic stress disorder (PTSD) remain to be elucidated. Clinical studies associate PTSD with polymorphisms of the FK506 binding protein 5 (FKBP5). However, it is unclear whether changes in FKBP5 expression alone could produce resiliency or susceptibility to PTSD-like symptoms. In this study, we used rats as an animal model to examine whether FKBP5 in the infralimbic (IL) or prelimbic (PL) medial prefrontal cortex regulates fear conditioning or extinction. First, we examined FKBP5 expression in IL and PL during fear conditioning or extinction. In contrast to the stable expression of FKBP5 seen in PL, FKBP5 expression in IL increased after fear conditioning and remained elevated even after extinction suggesting that IL FKBP5 levels may modulate fear conditioning or extinction. Consistent with this possibility, reducing basal FKBP5 expression via local infusion of FKBP5-shRNA into IL reduced fear conditioning. Furthermore, reducing IL FKBP5, after consolidation of the fear memory, enhanced extinction memory indicating that IL FKBP5 opposed formation of the extinction memory. Our findings demonstrate that lowering FKBP5 expression in IL is sufficient to both reduce fear acquisition and enhance extinction, and suggest that lower expression of FKBP5 in the ventral medial prefrontal cortex could contribute to resiliency to PTSD.


Assuntos
Condicionamento Psicológico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Regulação da Expressão Gênica/fisiologia , Córtex Pré-Frontal/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Estimulação Acústica/efeitos adversos , Análise de Variância , Animais , Aprendizagem da Esquiva/fisiologia , Comportamento Exploratório/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas de Ligação a Tacrolimo/genética , Fatores de Tempo
12.
Neurobiol Learn Mem ; 130: 77-82, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26860438

RESUMO

Patients with posttraumatic stress disorder (PTSD) show hypo-active ventromedial prefrontal cortices (vmPFC) that correlate with their impaired ability to discriminate between safe and dangerous contexts and cues. Previously, we found that auditory fear conditioning depresses the excitability of neurons populating the homologous structure in rodents, the infralimbic cortex (IL). However, it is undetermined if IL depression was mediated by the cued or contextual information. The objective of this study was to examine whether contextual information was sufficient to depress IL neuronal excitability. After exposing rats to context-alone, pseudoconditioning, or contextual fear conditioning, we used whole-cell current-clamp recordings to examine the excitability of IL neurons in prefrontal brain slices. We found that contextual fear conditioning reduced IL neuronal firing in response to depolarizing current steps. In addition, neurons from contextual fear conditioned animals showed increased slow afterhyperpolarization potentials (sAHPs). Moreover, the observed changes in IL excitability correlated with contextual fear expression, suggesting that IL depression may contribute to the encoding of contextual fear.


Assuntos
Condicionamento Clássico/fisiologia , Medo/fisiologia , Sistema Límbico/fisiologia , Potenciais de Ação/fisiologia , Animais , Extinção Psicológica/fisiologia , Masculino , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
13.
J Neurosci ; 35(36): 12394-403, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26354908

RESUMO

Adolescent rats are prone to impaired fear extinction, suggesting that mechanistic differences in extinction could exist in adolescent and adult rats. Since the infralimbic cortex (IL) is critical for fear extinction, we used PCR array technology to identify gene expression changes in IL induced by fear extinction in adolescent rats. Interestingly, the ephrin type B receptor 2 (EphB2), a tyrosine kinase receptor associated with synaptic development, was downregulated in IL after fear extinction. Consistent with the PCR array results, EphB2 levels of mRNA and protein were reduced in IL after fear extinction compared with fear conditioning, suggesting that EphB2 signaling in IL regulates fear extinction memory in adolescents. Finally, reducing EphB2 synthesis in IL with shRNA accelerated fear extinction learning in adolescent rats, but not in adult rats. These findings identify EphB2 in IL as a key regulator of fear extinction during adolescence, perhaps due to the increase in synaptic remodeling occurring during this developmental phase.


Assuntos
Tonsila do Cerebelo/metabolismo , Extinção Psicológica , Medo , Córtex Pré-Frontal/metabolismo , Receptor EphB2/metabolismo , Tonsila do Cerebelo/crescimento & desenvolvimento , Tonsila do Cerebelo/fisiologia , Animais , Masculino , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor EphB2/genética
14.
J Neurosci ; 34(50): 16698-712, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25505322

RESUMO

Stoichiometric labeling of endogenous synaptic proteins for high-contrast live-cell imaging in brain tissue remains challenging. Here, we describe a conditional mouse genetic strategy termed endogenous labeling via exon duplication (ENABLED), which can be used to fluorescently label endogenous proteins with near ideal properties in all neurons, a sparse subset of neurons, or specific neuronal subtypes. We used this method to label the postsynaptic density protein PSD-95 with mVenus without overexpression side effects. We demonstrated that mVenus-tagged PSD-95 is functionally equivalent to wild-type PSD-95 and that PSD-95 is present in nearly all dendritic spines in CA1 neurons. Within spines, while PSD-95 exhibited low mobility under basal conditions, its levels could be regulated by chronic changes in neuronal activity. Notably, labeled PSD-95 also allowed us to visualize and unambiguously examine otherwise-unidentifiable excitatory shaft synapses in aspiny neurons, such as parvalbumin-positive interneurons and dopaminergic neurons. Our results demonstrate that the ENABLED strategy provides a valuable new approach to study the dynamics of endogenous synaptic proteins in vivo.


Assuntos
Corantes Fluorescentes/análise , Guanilato Quinases/análise , Proteínas de Membrana/análise , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Região CA1 Hipocampal/química , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Espinhas Dendríticas/química , Espinhas Dendríticas/metabolismo , Proteína 4 Homóloga a Disks-Large , Corantes Fluorescentes/metabolismo , Guanilato Quinases/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos
15.
J Neurosci ; 33(17): 7184-93, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23616528

RESUMO

Studies suggest that plasticity in the infralimbic prefrontal cortex (IL) in rodents and its homolog in humans is necessary for inhibition of fear during the recall of fear extinction. The recall of extinction is impaired by locally blocking metabotropic glutamate receptor type 5 (mGluR5) activation in IL during extinction training. This finding suggests that mGluR5 stimulation may lead to IL plasticity needed for fear extinction. To test this hypothesis, we recorded AMPA and NMDA currents, AMPA receptor (AMPAR) rectification, and intrinsic excitability in IL pyramidal neurons in slices from trained rats using whole-cell patch-clamp recording. We observed that fear extinction increases the AMPA/NMDA ratio, consistent with insertion of AMPARs into IL synapses. In addition, extinction training increased inward rectification, suggesting that extinction induces the insertion of calcium-permeable (GluA2-lacking) AMPARs into IL synapses. Consistent with this, selectively blocking calcium-permeable AMPARs with Naspm reduced the AMPA EPSCs in IL neurons to a larger degree after extinction. Extinction-induced changes in AMPA/NMDA ratio, rectification, and intrinsic excitability were blocked with an mGluR5 antagonist. These findings suggest that mGluR5 activation leads to consolidation of fear extinction by regulating the intrinsic excitability of IL neurons and modifying the composition of AMPARs in IL synapses. Therefore, impaired mGluR5 activity in IL synapses could be one factor that causes inappropriate modulation of fear expression leading to anxiety disorders.


Assuntos
Extinção Psicológica/fisiologia , Sistema Límbico/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Sinapses/fisiologia , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Extinção Psicológica/efeitos dos fármacos , Medo , Sistema Límbico/efeitos dos fármacos , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Sinapses/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...